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Abstract
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domain with anisotropic flow. We consider both ordinary and generalized least squares
parameter estimation procedures.
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1 Introduction

Nondestructive evaluation is often used to identify damage in structures, including compo-
nents of aircraft, spacecraft, automobiles, trains and piping, as they age beyond their design
life (though there are many other uses, see [15]). Many nondestructive evaluation techniques
(acoustic, eddy-current, etc) detect and characterize damages through differences in observed
physical parameters, requiring sophisticated parameter estimation procedures. In thermal
nondestructive evaluation, damage is often detected and characterized through differences
in the observed thermal diffusivity. Nondestructive evaluation has been developed in most
cases for homogeneous materials. However many structures of current interest contain com-
ponents of composite materials which are manufactured with a nontrivial amount of porosity.
In [1], we considered modeling the flow of heat through porous samples by use of solutions
of a heat equation on a randomly perforated domain. As noted, this model was too com-
putationally intensive for direct use in parameter estimation or inverse problem techniques.
We thus considered an approximation for a heat equation on a perforated domain which
was derived through limiting processes in homogenization theories for the forward problem
in [2]. Though the results of [2] were encouraging, good behavior of an approximation in
the forward problem is not necessarily indicative of the behavior of the approximation in
inverse problems. Moreover, in our earlier work we did not consider random error which is
often associated with experimental data. In this paper we present initial results suggesting
that indeed the homogenization approximate mathematical models developed in [2] and [1]
will perform well in an inverse problem setting. We do this with noisy simulated data in
the context of mathematical and statistical parameter estimation procedures discussed and
developed in [6], [13] and also in [4]. We treat data simulated with absolute error in Section 3
and data simulated with relative error in Section 4.

2 Mathematical Model

Before formulating a class of inverse problems, we consider several models for the forward
problem. We first summarize a method developed in [1] for modeling the flash heat exper-
iment on a porous domain. We consider a randomly perforated domain Ω ⊂ Ω̂, where the
homogeneous, non perforated domain Ω̂ is an L1×L2 rectangle (L1 is the length in the hori-
zontal direction). As convention, we take spatial coordinates (x, y), where x is the horizontal
coordinate and y is the vertical coordinate. We assume nr randomly placed pores Ωi with
boundaries ∂Ωi for i = 1, 2 . . . nr, which are generated using methods described in [1],[2] and
[18]. We assume that these pores do not intersect with each other nor the boundaries of Ω̂.
The perforated domain Ω is given by Ω̂ \ (∪nr

i=1Ωi). The four boundaries of Ω̂ which are also
the four exterior boundaries of Ω are denoted ωi for i = 1, 2, 3, 4 (as depicted in Figure 2.1).
We model the flash heat experiment which approximates an experiment where the bottom
boundary ω4 = {(x, y)|x ∈ [0, L1], y = 0} is heated by a flash heat source [16]. Throughout
this document, we will refer to ω4 as the source boundary. We model the dynamics of the
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flash heat experiment on Ω with the partial differential equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

urand
t − α∇ · (∇urand

)
+ γurand = 0 in Ω× (0, T )

α∂urand

∂η
= 0 on ∪nr

i=1 ∂Ωi × (0, T )

α∂urand

∂η
= −λurand on ∪3

i=1 ωi × (0, T )

α∂urand

∂η
= SfI[0,ts](t)− λurand on ω4 × (0, T )

urand(0, �x) = 0,

(2.1)

where α is the thermal diffusivity of the material Ω, γ corresponds to loss in the direction
orthogonal to the domain Ω (the z direction) and λ corresponds to loss on the boundary of
the the rectangle Ω̂.

Figure 2.1: An example randomly perforated domain Ω̂ (enlarged view).

The flash heat input is modeled by the term SfI[0,ts](t) where

I[0,ts](t) =

{
1, for t ≤ ts

0 for t > ts.

There are a number of difficulties associated with using (2.1) as a model when carrying out
inverse problems. The computational time associated with solving the forward problem (2.1)
for urand on a time interval of interest in the flash heat experiments is roughly two minutes.
This is prohibitively long for use in the inverse problems as well as in some simulation
applications of the forward model. Beyond the computational intensity associated with
solving (2.1), the random geometry of thin porous samples (which we model as Ω) is not
precisely known for the nondestructive evaluation (NDE) applications of interest and thus
we cannot assume that Ω is known a priori.

In [2], we discussed the approximation of the heat equation on the random domain Ω
with results derived from homogenization theory (see [2],[8], [11], [9], [12] and [10] and the
references therein for details). Using the results of homogenization theory, we obtain the
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limit system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pV Ut − α∇ · (A0∇U) + γpVU = 0 in Ω̂× (0, T )

α ∂U
∂ηA0

= −λU on ∪3
i=1 ωi × (0, T )

α ∂U
∂ηA0

= SfI[0,ts](t)− λU on ω4 × (0, T )

U(0, �x) = 0,

(2.2)

where pV is the proportion of Ω̂ occupied by Ω (pV = area of Ω
area of Ω̂

) and A0 is the 2×2 homogenized
matrix which can be readily calculated using methods described in [2]. On the boundaries
we use the notation ∂U

∂ηA0
= �n · A0∇U where �n is the exterior unit normal vector. The

action of A0 is to approximate the isotropic flow through the random domain Ω around
the perforations Ωi with anisotropic flow through the homogeneous rectangle Ω̂. For more
discussion of this aspect of our homogenization approximation, see [2]. Specifically, under
reasonable assumptions, one has in particular the following convergences as nr → ∞:{

ũrand ⇀ pV U weakly in L2(0;T ;H1(Ω̂)),

ν(ũrand) ⇀ ν(U) weakly in L2(0, T ;L2(ω4)),
(2.3)

where ·̃ denotes the zero extension of a function defined on to all of Ω̂, and ν is the linear
trace operator ν : L2(0, T ;H1(Ω̂)) 	→ L2(0, T ;L2(ω4)). Moreover (for more details see [5]), a
corrector result also shows that⎧⎨⎩

lim
nr→∞

‖urand − U‖C([0,T ];L2(Ω)) = 0,

lim
nr→∞

‖∇urand − CΩ∇U‖C([0,T ];L2(Ω)) = 0,
(2.4)

where CΩ is the corrector matrix associated to the elliptic problem corresponding to (2.1).
Actually one also has error estimates of the type

‖urand − U‖L2(Ω) ≤ ε1/2C, a. e. for t ∈ (0, T ).

Based on this and on the convergences (2.3), (2.4), we propose to use U , the solution of
(2.2), as a model solution in the ordinary least squares estimation (OLS) procedures with
simulated data generated using U with added absolute random error and with simulated
data generated using urand (the solution of (2.1)) again with added absolute random error in
Section 3. In Section 4, we use U as a model solution in the generalized least squares (GLS)
estimation procedures with simulated data generated using U with added relative random
error and with simulated data generated using urand with added relative random error.

3 Ordinary Least Squares

We assume a statistical model which describes data with random error that has zero mean, is
independent and has constant variance. We discuss the OLS parameter estimation procedure
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in general and then go on to present results from carrying out the OLS parameter estimation
procedure on the two different forms of simulated data in Section 3.1.

We consider the full parameter set θ = (γ, α, λ), and subsets θλ = (γλ, αλ) (corresponding
to the assumption that the boundary loss parameter λ is known) and θγ = (αγ, λγ) (corre-
sponding to the assumption that the parameter that models loss in the orthogonal direction
γ is known). Having introduced the three parameter sets of interest, we will use without loss
of generality the notation θ# to represent any one of the three parameter sets θ, θλ and θγ .

Full state observation is rare, especially when the set of states is continuous (for our
problem �x ∈ Ω̂). Often, when one performs thermal nondestructive evaluation, data is given
by the output of an IR camera on the boundary ω4. To model the resulting pixels, we define
observation operators

Ci(φ) = 1




∫ xi+�

xi

φ(s, 0) ds.

Thus Ci yields the average value of functions along intervals of length 
 starting at x = xi on
ω4 (the source boundary as well as the observation boundary). We suppose the “perfectly
resolved” data is given by

Uij(θ
#
0 ) =

1




∫ xi+�

xi

U(tj , s, 0; θ
#
0 ) ds (3.1)

or Uij(θ
#
0 ) = CiU(tj , ·; θ#0 ) where θ#0 is the “true” parameter value. We will denote m

spatial nodes xi = x1, x2, . . . , xm, and n temporal nodes tj = t1, t2, . . . , tn. The statistical
assumptions that underlie the OLS parameter estimation procedure corresponding to this
observation process is then that data are given by realizations of the random process Y ij

which is defined as
Y ij = Uij(θ

#
0 ) + E ij, (3.2)

where E ij is a random variable that satisfies (3.3) below. The random variable (random
error) E ij is further assumed to have zero mean, be independent and have constant variance.
More precisely, we assume

E(E ij) = 0
V ar(E ij) = σ2

0

Cov(E ij,Ekh) = 0 for (i, j) �= (k, h).
(3.3)

It is important to emphasize that Y ij is a random variable with realizations yij. The real-
ization yij would correspond to observed data.

In order to obtain the parameter estimate θ̂#, we must minimize the OLS cost functional

J(θ#) =
m∑
i=1

n∑
j=1

(Uij(θ
#)− yij)

2. (3.4)

So for each data set {yij}, the parameter estimate is given by

θ̂# = arg min
θ#∈Θ#

J(θ#) (3.5)
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where Θ# is an admissible parameter set. The variance estimate is then given by

σ̂2
# =

J(θ̂#)

nm− p
(3.6)

where p is the number of parameters; thus p = 2 for θ̂# = θ̂γ and θ̂# = θ̂λ while p = 3 for
θ̂# = θ̂.

Data collection nodes can be selected in many sophisticated ways such as by using SE-
optimal design, E-optimal design, D-optimal and c-optimal design methods (see [7] and refer-
ences therein). However, this is not the focus of our current efforts so we will simply examine
the traditional sensitivity functions to select data collections nodes. For each parameter θ#k
in the parameter set θ#, the associated traditional sensitivity function (the sensitivity of the

model solution with respect to θ#k ) V
θ#k = ∂U

∂θ#k
corresponds to the sensitivity of the solution

with respect to the kth parameter. In places where the sensitivity V θ#k is zero, one cannot
obtain any information about the kth parameter. However, sensitivity information must be
used with care in design of inverse problems [3]. For example, the information is local in
nature (i.e., depends on the values θ# at which the derivatives are evaluated) and moreover,
one should not exclusively choose nodes in the regions of the highest sensitivity.

We examined the output sensitivity functions

V γ(t, xi) =
∂

∂γ

(
1




∫ xi+�

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

)
V α(t, xi) =

∂

∂α

(
1




∫ xi+�

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

)
V λ(t, xi) =

∂

∂λ

(
1




∫ xi+�

xi

U(t, s, 0; (10−3, 2.9167, 0.01)) ds

) (3.7)

for 
 = 0.57 and xi = 0, 0.57, 1.14, 1.71 using calculations detailed in Appendix A. We
chose the values of xi and 
 based on an example pixel width. For θ# we chose γ = 10−3,
α = 2.9167 and λ = 0.01 based on physically reasonable values [2]. These are also the values
of θ# that we used for the simulated data in Sections 3.1 and 4.1.

After inspecting V γ , V α and V λ for different values of xi, we observed little difference
and thus we arbitrarily chose two sets of spatial nodes xi ∈ {0, 0.57} and xi ∈ {0, 0.57, 1.14}
to consider the effect of sparsity of spatial nodes on the inverse problem. As depicted in
Figures 3.1(a) and (b), the values of V γ(t, xi), V

α(t, xi) and V λ(t, xi) vary over time. The
sensitivity with respect to α, V α(t, xi) goes to zero quickly after the end of flash-heating at
ts = 0.6 s in Figure 3.1(a). There is often more measurement error during flash-heating so
we take many times just after the end of flash heating {0.6 + 1

120
, 0.6 + 2

120
, . . . 0.6 + 7

120
}

to gain information about the parameter α. The sensitivities to γ and λ are depicted in
Figure 3.1(b) and go to zero much more slowly than V α. We take times {20, 40, . . . , 140}
to gain information about the parameters γ and λ. We note that in Figure 3.1(b) the
sensitivity with respect to γ is less than the sensitivity with respect to λ. This suggests
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(a)

(b)

Figure 3.1: The sensitivity functions of 1
0.57

∫ 0.57

0
U(t, s, 0) ds where U is the solution of (2.2)

with γ = 10−3, α = 2.9167 and λ = 0.01. (a) The sensitivity with respect to α for time
t ∈ [0, 2]. (b) The sensitivity with respect to λ and γ for time t ∈ [0, 300].
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that there could be problems estimating γ; we will further discuss the well-posedness of
estimating γ in Section 3.1.

Using the sensitivity matrix with entries

χi+m(j−1),k(θ) =
∂

∂θk
Uij(ζ)

∣∣∣∣
ζ=θ

(3.8)

we may use asymptotic distribution results (see [6]) to calculate the estimated covariance
matrix

Σ(θ̂#) = σ̂2
(
χT (θ̂#)χ(θ̂#)

)
(3.9)

and the estimated standard error for the kth parameter

SE(θ̂#k ) =

√
Σkk(θ̂#). (3.10)

3.1 Simulated Ordinary Least Squares Data

We would like to consider data motivated by (2.1) because we suspect that this model will
generate solutions that resemble experimental data. We cannot, however, use (2.1) as a
model solution in the OLS cost functional (3.4) because the random geometry Ω in (2.1) is
not a priori knowledge in most thermal nondestructive evaluation applications. On the other
hand we observe that Uij(θ) of (2.2) depends on pV , the porosity ration for which reasonable
a priori estimates are available. Thus we are concerned with the behavior of Uij(θ) as a
model solution in the inverse problem with data motivated by urand. It is not simple to
ensure that the OLS assumptions (i.e., model independent constant variance errors that are
iid as in (3.3)) are satisfied even in the most straight forward cases because relations between
parameters can cause violations in the OLS assumptions. For instance, the estimation of γ is
ill-posed. In the partial differential equation (2.2), if we make the transformation U = e−γtZ
in (2.2) the partial differential equation system becomes⎧⎪⎪⎨⎪⎪⎩

pVZt − α∇ · (A0∇Z) = 0 on Ω̂× (0, T )

α ∂Z
∂ηA0

= −λZ on ∪3
i=1 ωi × (0, T )

α ∂Z
∂ηA0

= Sf Ĩ[0,ts](t)− λZ on ω4 × (0, T ),

(3.11)

where Ĩ[0,ts](t) = eγtI[0,ts](t). This means that if we rewrite the cost functional in (3.4) as

J(θ) =
m∑
i=1

n∑
j=1

(CiU(tj , ·; θ)− dij)
2 (3.12)

we can see that the cost functional J(θ) in (3.12) where U(tj , ·; θ) is the solution of (2.2) can
equivalently be written as the weighted least squares

J(θ) =

m∑
i=1

n∑
j=1

e−2γtj
(CiZ(tj , ·; θ)− eγtjdij

)2
, (3.13)
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and an equivalent OLS formulation for Z would drop the weight terms e−2γtj . Here Z(θ) is
the solution of (3.11) and dij is the observed data. This implies that by including γ in the
inverse problem formulation, any noise in the data might be amplified. This will also cause
model dependence in the error in dij which violates the error assumptions of (3.3) in the
corresponding OLS formulation. This is evidence that the parameter γ plays a very different
role in the estimation problems when compared to that of either α or λ, and along with the
sensitivity results of Figure 3.1, suggests an additional level of ill-posedness in estimating γ
that is not present in problems where γ is held fixed.

Because of the subtlety in verifying the OLS error assumptions (3.3) directly, we will
compare data simulated using the solution of (2.2) with data simulated using the solution of
(2.1). We simulate data motivated by OLS assumptions and the solution of (2.2) with the
random process

Dij(σ) = Uij(10
−3, 2.9167, 0.01) + σBij (3.14)

where Bij is a random variable which follows a standard normal distribution or Bij ∼
N (0, 12). We consider two sets of spatial nodes xi = 0, 0.57 and xi = 0, 0.57, 1.14.

We simulate data motivated by the OLS error assumptions (3.3) and the solution of (2.1)
with the random process

Drand
ij (σ) = urand

ij + σBij (3.15)

where urand
ij is given by

urand
ij =

1




∫ xi+�

xi

urand(tj, s, 0; (10
−3, 2.9167, 0.01)) ds, (3.16)

with urand(tj , s, 0; (10
−3, 2.9167, 0.01)) the solution of (2.1) with (γ, α, λ) = (10−3, 2.9167, 0.01)

on a randomly perforated geometry Ω.
For realizations of Dij(σ) and Drand

ij (σ) each data set is analyzed using the results of OLS
asymptotic theory for the parameter sets θγ = (αγ, λγ), θ

λ = (γλ, αλ) and θ = (γ, α, λ). So for

each data set we preform three inverse problems calculating three parameter estimates θ̂γ , θ̂λ

and θ̂ using (3.5), three variance estimates σ̂2
γ , σ̂

2
λ and σ̂2 using (3.6), three covariance matrix

estimates Σ(θ̂γ), Σ(θ̂λ), and Σ(θ̂) using (3.9), and the standard error for each parameter in
the sets θ̂γ, θ̂λ and θ̂, denoted SE(α̂γ), SE(λ̂γ), SE(γ̂λ), SE(α̂λ), and SE(γ̂), SE(α̂), SE(λ̂)
using (3.10).

There are many different ways to consider these parameter estimation and uncertainty
quantification problems. We will consider the difference between the parameter estimate and
the “true” parameter values γ0 = 10−3, α0 = 2.9167, and λ0 = 0.01 which will give us insight
into the accuracy of the parameter estimate θ̂#k . Recall the ratio SE(θ̂#k )/θ̂

#
k is related to

the uncertainty associated with the parameter estimate θ̂#k . Thus we also consider the ratio
of the estimated standard error to the parameter estimate. When this ratio is large, there is
little confidence in the value of the parameter θ̂#k . For instance, the 95% confidence interval
[6] for m = 3 for γ̂ is given by (γ̂ − 2.02 × SE(γ̂), γ̂ + 2.02 × SE(γ̂)). In this example when
SE(γ̂)/γ̂ is greater than 0.5, the confidence interval actually covers possible negative values
for γ.
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We compare the results of ordinary least squares parameter estimation procedure for
realizations of Dij(σ) with the results of ordinary least squares parameter estimation proce-
dure for realizations of Drand

ij (σ). In Figures 3.2–3.7, the simulated data is taken at temporal
collection nodes tj = 0.6 + 1

120
, 0.6 + 2

120
, . . . , 0.6 + 7

120
, 20, 40, . . . , 140 and spatial nodes

xi = 0, 0.57, 1.14. Figure 3.2(a) depicts the difference α̂# −α0 for each of five realizations at
each level of added noise σ = 0.015, 0.030, . . . , 0.090 for Dij(σ). The estimates for the three
parameter subsets do not appear to vary much. That is, we see that for each realization the
differences α̂−α0, α̂γ−α0 and α̂λ−α0 are relatively close. Figure 3.2(b) depicts the difference
α̂#−α0 for each of five realizations of Drand

ij (σ) at each level of noise σ = 0, 0.015, . . . , 0.090,
we see that the differences α̂# − α0 again do not appear to vary much for each realization.
Moreover, the results depicted in Figure 3.2(a) resemble the results depicted in Figure 3.2(b).
This suggests that using realizations of Dij(σ) versus D

rand
ij (σ) does not affect the accuracy

of the estimates α̂#. In Figures 3.3 (a) and (b), we examine the ratios SE(α̂#)/α̂# for the
five realizations of Dij(σ) and Drand

ij (σ), respectively. In Figure 3.3(a), we see that the un-
certainty associated with the estimate α̂ is larger than the uncertainty associated with the
estimates α̂γ and α̂λ. It also appears that the ratio SE(α̂#)/α̂# varies linearly with σ. These
observations are valid for the ratios depicted in Figure 3.3(b), as well. The similarities in
Figure 3.3(a) and Figure 3.3(b) suggest that there is not a significant difference in using
realizations Dij(σ) and Drand

ij (σ) regarding the uncertainty associated the OLS parameter
estimate α̂#.

We also considered the parameter λ. Figures 3.4(a) are the differences λ#−λ0 (λ0 = 0.01)
for the realizations used in Figures 3.2(a) and 3.3(a). Unlike the parameter α, there is a
large difference in the λ̂# − λ0. The magnitude of the difference λ̂− λ0 is much larger than

the magnitude of the difference λ̂γ − λ0 indicating that estimating γ adds inaccuracy to the

estimate of λ. In Figure 3.4(b), we have plotted the difference λ̂# − λ0 for the realizations

depicted in Figures 3.2(b) and 3.3(b). In Figure 3.4(b), we see that the differences λ̂γ − λ0

and λ̂− λ0 for the realizations of Drand
ij (σ) resemble these differences for the realizations of

Dij(σ) in Figure 3.4(a) so we suspect that the error associated with the approximation of
urand (the solution of (2.1)) with U (the solution of (2.2)) in the model solution does not
affect the estimate of λ̂γ nor that of λ̂.

In Figure 3.5(a), we see that the ratio SE(λ̂γ)/λ̂γ appears to be linear in σ for the
realizations of Dij(σ). This linear pattern is similar to the linearity in Figure 3.5(c) which

depicts the ratio SE(λ̂γ)/λ̂γ for the realizations of Drand
ij (σ). Moreover, the ratio SE(λ̂γ)/λ̂γ

is on about the same scale in Figures 3.5(a) and (c). So for λ̂γ , there does not appear to be a
significant difference in using data generated by (3.14) versus data generated by (3.15) in the
accuracy of the parameter estimate λ̂γ nor in the uncertainty associated with the parameter

estimate λ̂γ.

In order to consider the ratio SE(λ̂)/λ̂, we plotted the logarithm of this quantity in
Figures 3.5(b) (for realizations of Dij(σ)) and 3.5(d) (for realizations of Drand

ij (σ)) because

in both examples these quantities vary greatly. The ratio SE(λ̂)/λ̂ in both Figure 3.5(b)
and Figure 3.5(d) appears to grow exponentially with added error σ which is not surprising
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Figure 3.2: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points

denoted with o are the difference α̂γ − α0, the points denoted are the α̂λ − α0, the points
denoted ∗ are the difference α̂ − α0 (a) The result of five realizations of Dij(σ) for values
of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.015, . . . , 0.090.
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Figure 3.3: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points

denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the points
denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ) for values
of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.015, . . . , 0.090.
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based on our observation in (3.13) that γ in the parameter estimation increases the error in
the data.

The estimation of γ is ill-posed for the parameter values, spatial nodes and temporal nodes
in this problem. In Figures 3.6(a) and (b), we see that the difference γ̂ − γ0 (γ0 = 10−3) is
very large compared to γ0. This is true for both the realizations of Dij(σ) in Figure 3.6(a)
and the realizations of Drand

ij (σ) in Figure 3.6(b). Though the differences γ̂λ − γ0 are smaller
than γ̂ − γ0 Figures 3.6(a) and (b), in Figures 3.7(a) and (c) we see that the uncertainty
associated with the estimate γ̂λ is ver large. In Figure 3.7(a), we see that for the realizations
of Dij(σ) the ratios SE(γ̂λ)/γ̂λ does not appear to grow exponentially with σ but the values
of SE(γ̂λ)/γ̂λ are too large to be confident of even the sign of γ̂λ. The use of Drand

ij (σ) in
the OLS parameter estimation procedure does appear to affect the uncertainty associated
with the parameter estimate γ̂λ as we see in the exponential growth of SE(γ̂λ)/γ̂λ with σ for
realizations of Drand

ij (σ) in Figure 3.7(c). The ratio SE(γ̂)/γ̂ varies on an exponential scale

for both realizations of Dij(σ) and Drand
ij (σ) in Figures 3.7(b) and (d), respectively.

We also considered data at temporal nodes tj = 0.6 + 1
120

, 0.6 + 2
120

, . . . , 0.6 + 7
120

, 20,
40, . . . , 140 and spatial nodes xi = 0, 0.57 to understand how sparsity of spatial data affects
the inverse problem. For each level of added noise σ = 0.015, 0.030, . . . , 0.090, we simulated
five realizations of Dij(σ) using (3.14). We also simulated five realizations of drand

ij (σ) using

(3.15) for each level of added noise σ = 0, 0.015, . . . , 0.090. For each realization of Drand
ij (σ)

a different random geometry Ω is used to solve (2.1) for urand
ij in (3.16). Results from these

simulations are given in Figures 3.8–3.13.
For the realizations of Dij(σ), the differences α̂# − α0 are plotted in Figure 3.8(a) while

these differences for the realizations of Drand
ij (σ) are plotted in Figure 3.8(b). Much like these

quantities in Figures 3.2(a) and (b), for each realization the differences α̂λ − α0, α̂γ − α0

and α̂ − α0 remain relatively close and are on about the same scale as in Figures 3.2(a)
and (b). The ratios SE(α̂#)/α̂# for the realizations of Dij(σ) and Drand

ij (σ) are plotted in
Figures 3.9(a) and (b), respectively. In both figures, it appears that the ratio SE(α̂)/α̂
is larger than the ratios SE(α̂λ)/α̂λ and SE(α̂γ)/α̂γ. It also appears that the relationship
between the ratios SE(α̂#)/α̂# and σ is linear as we observed in Figures 3.3(a) and (b) as well.
This suggests that for the temporal and spatial nodes that we are considering estimating α
is well-posed and there is little difference between using realizations of Drand

ij (σ) and Dij(σ)
in the estimation of the parameter α and the estimation of the uncertainty associated with
α.

In Figures 3.10(a) and (b), we see that the difference λ̂−λ0 is larger than λ̂γ −λ0 for the
realizations of Dij(σ) and Drand

ij (σ), respectively. Figure 3.10(b) resembles Figure 3.10(a)

which suggests that using realizations of Drand
ij (σ) rather than realizations of Dij(σ) does

not have a substantial effect on the accuracy of the parameter estimates λ̂#. The ratios

SE(λ̂γ)/λ̂γ appear to be similar for realizations of Dij(σ) (in Figure 3.11(a)) and realizations

of Drand
ij (σ) (in Figure 3.11(c)) and seem to vary linearly with σ. The ratios SE(λ̂)/λ̂ are

much larger than the ratios SE(λ̂γ)/λ̂γ, so we plotted log(SE(λ̂)/λ̂) for the realizations of
Dij(σ) in Figure 3.11(b) and for the realizations of Drand

ij (σ) in Figure 3.11(d). This implies
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Figure 3.4: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points denoted

with o are the difference λ̂γ − λ0, and the points denoted ∗ are the difference λ̂− λ0 (a) The
result of five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of
five realizations of Drand

ij (σ) for values of σ = 0, 0.015, . . . , 0.090.
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Figure 3.5: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a) The ratio

SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The log

of the ratio log SE(λ̂)/λ̂ for five realizations ofDij(σ) for values of σ = 0.015, 0.030, . . . , 0.090.

(c) The ratio SE(λ̂γ)/λ̂γ for five realizations of Drand
ij (σ) for values of σ = 0, 0.015, . . . , 0.090.

(d) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ =

0, 0.015, 0.030, . . . , 0.090.
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Figure 3.6: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points denoted

with o are the difference γ̂λ − γ0, and the points denoted ∗ are the difference γ̂ − γ0 (a) The
result of five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of
five realizations of Drand

ij (σ) for values of σ = 0, 0.015, . . . , 0.090.
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Figure 3.7: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a) The ratio

SE(γ̂λ)/γ̂λ for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The log
of the ratio log SE(γ̂)/γ̂ for five realizations ofDij(σ) for values of σ = 0.015, 0.030, . . . , 0.090.
(c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Drand

ij (σ) for values of

σ = 0, 0.015, . . . , 0.090. (d) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ)

for values of σ = 0, 0.015, 0.030, . . . , 0.090.
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Figure 3.8: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points de-

noted with o are the difference α̂γ − α0, the points denoted are the α̂λ − α0, the points
denoted ∗ are the difference α̂ − α0 (a) The result of five realizations of Dij(σ) for values
of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.015, . . . , 0.090.
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Figure 3.9: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points de-

noted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the points
denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ) for values
of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.015, . . . , 0.090.
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that for realizations of Dij(σ) and Drand
ij (σ) estimating γ causes a dramatic increase in the

uncertainty associated with the parameter estimate λ̂ for spatial nodes xi = 0, 0.57. Note
that this effect appears to be similar for realizations of Dij(σ) in Figure 3.11(b) as for
realizations of Drand

ij (σ) in Figure 3.11(d).
The estimation of the parameter γ appears to be ill-posed for the spatial nodes xi =

0, 0.57, especially when estimating the parameter set (γ, α, λ). The differences γ̂ − γ0 are
several orders of magnitude larger than the “true” parameter γ0 = 10−3 in Figure 3.12(a)
(for realizations of Dij(σ)) and in Figure 3.6(b) (for realizations of Drand

ij (σ)).
For the spatial nodes xi = 0, 0.57, the uncertainty associated with the parameter es-

timate γ̂# is very large. For all of the examples of SE(γ̂#)/γ̂# in Figures 3.13(a)–(d) we
plotted log (SE(γ̂#)/γ̂#) because the variation of SE(γ̂#)/γ̂# was so large for every exam-
ple. Figures 3.13(a) and (c) depict SE(γ̂λ)/γ̂λ for the realizations of Dij(σ) and Drand

ij (σ),
respectively. The ratios SE(γ̂λ)/γ̂λ are on an exponential scale for realizations of Dij(σ) in
Figure 3.13(a) with spatial nodes xi = 0, 0.57 while the ratios SE(γ̂λ)/γ̂λ are on a linear scale
for realizations of Dij(σ) in Figure 3.7(a) which indicates that sparsity of spatial collection
nodes affects the uncertainty associated with the parameter estimates γ̂#.
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Figure 3.10: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points denoted with

o are the difference λ̂γ −λ0, and the points denoted ∗ are the difference λ̂−λ0 (a) The result
of five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0, 0.015, . . . , 0.090.
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Figure 3.11: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio SE(λ̂γ)/λ̂γ

for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The log of the

ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090. (c)

The ratio SE(λ̂γ)/λ̂γ for five realizations of Drand
ij (σ) for values of σ = 0, 0.015, . . . , 0.090.

(d) The log of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ =

0, 0.015, 0.030, . . . , 0.090.
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Figure 3.12: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2
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, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points denoted with

o are the difference γ̂λ− γ0, and the points denoted ∗ are the difference γ̂− γ0 (a) The result
of five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0, 0.015, . . . , 0.090.
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Figure 3.13: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio SE(γ̂λ)/γ̂λ

for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090 (b) The log of the
ratio log SE(γ̂)/γ̂ for five realizations of Dij(σ) for values of σ = 0.015, 0.030, . . . , 0.090.
(c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Drand

ij (σ) for values of σ =

0, 0.015, . . . , 0.090. (d) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ) for

values of σ = 0, 0.015, 0.030, . . . , 0.090.
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4 Generalized Least Squares

The generalized least squares (GLS) parameter estimation procedure like the OLS parameter
estimation procedure is based on an underlying statistical model. The error for GLS is
assumed to be relative or proportional to the model value. Observations are assumed to be
realizations of the random process Y ij given by

Y ij = Uij(θ
#
0 ) (1 + E ij) , (4.1)

where E ij is assumed to have constant variance, zero mean, and mutually independent or

E(E ij) = 0
V ar(E ij) = σ2

0

Cov(E ij,Ekh) = 0 for (i, j) �= (k, h).
(4.2)

Note that in (4.1), the error is given by Uij(θ
#
0 )E ij so it is proportional to the model and

the variance is proportional to U2
ij(θ

#
0 ). Assuming the statistical model given by (4.1), the

GLS parameter estimation procedure involves the minimization of the cost functional

J(θ#) =

m∑
i=1

n∑
j=1

(
Uij(θ

#)− yij
Uij(θ#)

)2

. (4.3)

The GLS parameter estimate is given by

θ̂# = arg min
θ#∈Θ#

J(θ#), (4.4)

where J(θ#) is defined in (4.3). We used the iteratively reweighted least squares method as
described in [6] and [13] to minimize (4.3). The GLS variance estimate σ̂2

# is given by

σ̂2
# =

J(θ̂#)

nm− p
, (4.5)

where again J(θ̂#) is defined in (4.3). The nm× nm matrix of weights W (θ#) has entries

wi+m(j−1),i+m(j−1)(θ
#) =

1

U2
ij(θ

#)
(4.6)

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The GLS covariance matrix estimate Σ(θ̂#) is given
[6] by

Σ(θ̂#) = σ̂2
(
χT (θ̂#)W (θ̂#)χ(θ̂#)

)
(4.7)

where χ(θ̂#) is the matrix of sensitivities with entries given in (3.8). The standard error
estimates are again given by the square roots of the diagonal entries of the covariance matrix

SE(θ̂#k ) =

√
Σkk(θ̂#). (4.8)
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4.1 Simulated Generalized Least Squares Data

As in the previous section, we investigate the well-posedness of the GLS parameter estimation
procedure by considering the resulting parameter estimates and uncertainty estimates for
simulated data. We simulate data motivated by the GLS error assumptions in (4.1) and
(4.2) using both the solutions urand of (2.1) and solutions U of (2.2). In order to consider U
the solution of (2.2) as a model solution in the inverse problem, we will simulate data which
is given by realizations of Dij where Dij is given by

Dij(σ) = Uij(10
−3, 2.9167, 0.01) (1 + σBij) (4.9)

where Uij(10
−3, 2.9167, 0.01) is given by (3.1), andBij follows a standard normal distribution

or Bij ∼ N (0, 12). Again, as in Section 3.1, we consider spatial nodes xi = 0, 0.57, 1.14 and
xi = 0, 0.57 and temporal nodes tj = 0.6 + 1

120
, 0.6 + 2

120
, . . . , 0.6 + 7

120
, 20, 40, . . . , 140. We

analyzed five realizations of Dij(σ) for each value of σ = 0.02, 0.05, 0.10.
We also consider data which is generated using solutions of (2.1) and motivated by the

GLS assumptions with realizations of the random process

Drand
ij (σ) = urand

ij (1 + σBij), (4.10)

where urand
ij is defined in (3.16), and Bij is a random variable sampled from a standard

normal distribution or Bij ∼ N (0, 12). We calculated five realizations of Drand
ij (σ) for each

value of σ = 0, 0.02, 0.05, 0.10.
For both sets of simulations, we calculate the parameter estimates θ̂#, or θ̂λ = (γ̂λ, α̂λ),

θ̂γ = (α̂γ, λ̂γ) and θ̂ = (γ̂, α̂, λ̂) as defined in (4.4) by minimizing (4.3). We also calculate

SE(θ̂#) using (4.8).
As in Section 3.1, we consider the accuracy of the inverse problem by investigating

θ̂# − θ#0 and the uncertainty associated with the inverse problem by investigating the
ratios SE(θ̂#)/θ̂#. In Figures 4.1–4.6, we report on these simulations with spatial nodes
xi = 0, 0.57, 1.14. Figure 4.1(a) depicts α̂# − α0 for five realizations of Dij(σ) for each value
of σ = 0.02, 0.05, 0.10. The values of α̂#−α0 in Figure 4.1(b) for five realizations of Drand

ij (σ)
for each value of σ = 0, 0.02, 0.05, 0.10 appear to be smaller than those in Figure 4.1(a). This
suggests that the GLS parameter estimation procedure predicts α̂# more accurately for data
generated by realizations Drand

ij (σ) than for data generated by realizations of Dij(σ).
To consider the uncertainty associated with the parameter estimates α̂#−α0, we plotted

the ratio SE(α̂#)/α̂# in Figure 4.2(a) for realizations of Dij(σ) and in Figure 4.2(b) for
realizations of Drand

ij (σ). The ratios SE(α̂#)/α̂# appear to be linear in σ for realizations of

Dij(σ) and Drand
ij (σ) with similar slopes. It appears that there is little difference between us-

ing realizations of Dij(σ) and realizations of Drand
ij (σ) in the GLS estimate of the uncertainty

associated with the parameter estimate α̂#.

We plotted the differences λ̂# −λ0 for the realizations of Dij(σ) in Figure 4.3(a) and the

realizations ofDrand
ij (σ) in Figure 4.3(b). The differences between λ̂γ and λ0 are very small for

both realizations of Dij(σ) in Figure 4.3(a) and realizations of Drand
ij (σ) in Figure 4.3(b). The
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Figure 4.1: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points denoted

with o are the difference α̂γ − α0, the points denoted are the α̂λ − α0, the points denoted
∗ are the difference α̂ − α0 (a) The result of five realizations of Dij(σ) for values of σ =
0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.10.
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Figure 4.2: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points

denoted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the points
denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ) for val-
ues of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.02, 0.05, 0.10.
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differences λ̂− λ0 (depicted in Figure 4.3(a) for realizations of Dij(σ) and Figure 4.3(b) for
realizations of Drand

ij (σ)) have much larger magnitudes than the magnitudes of the differences

λ̂γ − λ0. This suggests, as discussed in Section 3.1 (see the discussions involving (3.11)–
(3.13)), that estimating γ detracts from the accuracy of the GLS estimate of the parameter
λ.

We further see the effect of estimating γ on the uncertainty associated with the parameter
estimate λ̂. In Figure 4.4(a) we plotted the ratio SE(λ̂γ)/λ̂γ versus σ for realizations ofDij(σ)

and the ratio SE(λ̂γ)/λ̂γ versus σ in Figure 4.4(c). The ratios SE(λ̂γ)/λ̂γ in both of these

examples appear to be linearly dependent on σ. When the full parameter set θ̂ is estimated,
we see that the ratio SE(λ̂γ)/λ̂γ varies exponentially with σ in Figures (b) and (d) in which
we plotted log(SE(α̂)/α̂) versus σ for realizations of Dij(σ) and Drand

ij (σ), respectively.
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Figure 4.3: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points denoted

with o are the difference λ̂γ − λ0, and the points denoted ∗ are the difference λ̂− λ0 (a) The
result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.4: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a) The ratio

SE(λ̂γ)/λ̂γ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log of the

ratio log SE(λ̂)/λ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10. (c) The ra-

tio SE(λ̂γ)/λ̂γ for five realizations of D
rand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10. (d) The log

of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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We also examined the differences between γ̂# − γ0 in Figures 4.5(a) and (b). In Fig-
ure 4.5(a), we plotted γ̂#−γ0 for realizations of Dij(σ). In Figure 4.5(b), we plotted γ̂#−γ0
for realizations of Drand

ij (σ). In both Figure 4.5(a) and (b), |γ̂λ − γ0| is several orders of

magnitude less than |γ̂ − γ0|. Thus by estimating the entire parameter set θ̂, we gain inac-
curacy of our estimate of γ̂. Moreover, the differences |γ̂ − γ0| are an order of magnitude
greater than the parameter itself γ0 = 10−3. In Figures 4.6(a)–(b), we see that the uncer-
tainty associated with the parameter estimate γ̂# varies exponentially with σ. Figure 4.6(a)
and (c), we plotted log(SE(γ̂λ)/γ̂λ) for realizations of Dij(σ) and Drand

ij (σ), respectively. In
Figures 4.6(b) and (d), we see that log(SE(γ̂)/γ̂) is larger for realizations of Dij(σ) (in (b))
than for realizations of Drand

ij (σ) (in (d)) though log(SE(γ̂)/γ̂) (in Figures 4.6(b) and (d))
appears to be larger than log(SE(γ̂λ)/γ̂λ) (in Figure 4.6(a) and (c)).
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Figure 4.5: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. The points denoted

with o are the difference γ̂λ − γ0, and the points denoted ∗ are the difference γ̂ − γ0 (a) The
result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.6: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6 + 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57, 1.14. (a) The log of the

ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The
log of the ratio log (SE(γ̂)/γ̂) for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10.
(c) The log of the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Drand

ij (σ) for values of σ =

0, 0.02, 0.05, 0.10. (d) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ) for

values of σ = 0, 0.02, 0.05, 0.10.
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We also considered realizations of Dij(σ) (given by (4.9)) and Drand
ij (σ) (given by (4.10))

for spatial nodes xi = 0, 0.57 and the same temporal nodes tj = 0.6+ 1
120

, 0.6+ 2
120

, . . . , 7
120

, 20,
40, . . . , 140. The results of these realizations are depicted in Figures 4.7–4.12.

We see that for realizations of Dij(σ) and Drand
ij (σ) the accuracy of the GLS parameter

estimation procedure for the parameter α is similar for the two random processes. We see
this in Figures 4.7(a) and (b) though it does appear that one realization of Drand

ij (0.10)
produced large values of α̂λ, α̂γ, and α̂ in Figure 4.7(b). In Figures 4.8(b), we see this
extreme realization of Drand

ij (0.10) also produced large ratios SE(α̂#)/α̂#. Other than this
extreme realization, the ratios SE(α̂#)/α̂# for realizations of Dij(σ) (in Figure 4.8(a)) and
Drand

ij (σ) (in Figure 4.8(b)) appear to have similar linear dependence on σ.

The differences λ̂# − λ0 are depicted in Figures 4.9(a) and (b) for realizations of Dij(σ)
and Drand

ij (σ), respectively. Again, we see similar results for realizations of Dij(σ) and

realizations ofDrand
ij (σ). We also note, that as was the case for spatial nodes xi = 0, 0.57, 1.14

in Figure 4.3(a) and (b), |λ̂−λ0| is much larger than |λ̂γ−λ0| for both realizations of Dij(σ)

and realizations of Drand
ij (σ). The ratio SE(λ̂γ)/λ̂γ appears to vary linearly with σ for both

realizations of Dij(σ) (in Figure 4.10(a)) and realizations of Drand
ij (σ) (in Figure 4.10(c)),

while the dependence of SE(λ̂)/λ̂ is less clear though it does vary greatly with σ for both
realizations Dij(σ) (log(SE(λ̂)/λ̂) is plotted in Figure 4.10(b)) and realizations of Drand

ij (σ)

(log(SE(λ̂)/λ̂) is plotted in Figure 4.10(d)).
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Figure 4.7: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points denoted with

o are the difference α̂γ −α0, the points denoted are the α̂λ−α0, the points denoted
∗ are the

difference α̂−α0 (a) The result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10
(b) The result of five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.

36



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

σ

SE
(α̂

#
)/

α̂
#

SE(α̂#)/α̂# for xi = 0, 0.57

 

 

SE(α̂γ)/α̂γ

SE(α̂λ)/α̂λ

SE(α̂)/α̂

(a)

0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

σ

SE
(α̂

#
)/

α̂
#

SE(α̂#)/α̂# for xi = 0, 0.57

 

 

SE(α̂γ)/α̂γ

SE(α̂λ)/α̂λ

SE(α̂)/α̂

(b)

Figure 4.8: The results of realizations of simulated data with temporal nodes tj =
0.6 + 1
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, 0.6 + 2
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, . . . , 7
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, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points de-

noted with o are the ratio SE(α̂γ)/α̂γ, the points denoted are the SE(α̂λ)/α̂λ, the points
denoted ∗ are the difference SE(α̂)/α̂ (a) The result of five realizations of Dij(σ) for val-
ues of σ = 0.02, 0.05, 0.10 (b) The result of five realizations of Drand

ij (σ) for values of
σ = 0, 0.02, 0.05, 0.10.
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Figure 4.9: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points denoted with

o are the difference λ̂γ − λ0, and the points denoted ∗ are the difference λ̂ − λ0 (a) The
result of five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The result of five
realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.10: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio SE(λ̂γ)/λ̂γ

for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log of the ratio

log SE(λ̂)/λ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10. (c) The ratio

SE(λ̂γ)/λ̂γ for five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10. (d) The log

of the ratio log SE(λ̂)/λ̂ for five realizations of Drand
ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.

39



The differences γ̂# − γ0 are plotted for realizations of Dij(σ) and Drand
ij (σ) in Fig-

ures 4.11(a) and (b), respectively. In both figures, the values |γ̂ − γ0| are much larger
than the values |γ̂λ − γ0|. This demonstrates that in these cases, estimating the full param-
eter set θ̂ contributes to inaccuracy of the paramter estimate of γ. Moreover, the differences
|γ̂ − γ0| are several orders of magnitude larger than the “true” parameter value γ0 = 10−3.
The values of the ratios SE(γ̂#)/γ̂# vary a lot with σ in Figures 4.12(a)–(d). Figure 4.12(a)
depicts log (SE(γ̂λ)/γ̂λ) for realizations of Dij(σ) while Drand

ij (σ) depicts log (SE(γ̂λ)/γ̂λ) for

realizations of Drand
ij (σ). In both Figure 4.12(a) and Figure 4.12(c), the ratio SE(γ̂λ)/γ̂λ

appears to depend exponentially on σ, though the value of SE(γ̂λ)/γ̂λ remains below one for
realizations that we considered. In Figures 4.12(b) and (d), we see that log(SE(γ̂)/γ̂) varies
between 1–5 for realizations of Dij(σ) (in (b)) and between -2–8 for realizations of Drand

ij (σ)
(in (d)).
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Figure 4.11: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. The points denoted with

o are the difference γ̂λ−γ0, and the points denoted ∗ are the difference γ̂−γ0 (a) The result of
five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The result of five realizations
of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.
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Figure 4.12: The results of realizations of simulated data with temporal nodes tj = 0.6 +
1

120
, 0.6+ 2

120
, . . . , 7

120
, 20, 40, . . . , 140 and spatial nodes xi = 0, 0.57. (a) The ratio SE(γ̂λ)/γ̂λ

for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10 (b) The log of the ratio
log SE(γ̂)/γ̂ for five realizations of Dij(σ) for values of σ = 0.02, 0.05, 0.10. (c) The log of
the ratio log(SE(γ̂λ)/γ̂λ) for five realizations of Drand

ij (σ) for values of σ = 0, 0.02, 0.05, 0.10.

(d) The log of the ratio log SE(γ̂)/γ̂ for five realizations of Drand
ij (σ) for values of σ =

0, 0.02, 0.05, 0.10.
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5 Conclusions

We investigated in [2] the behavior of solutions of (2.2) (a partial differential equation on
a homogeneous domain which is derived from homogenization theory) as approximations of
solutions of (2.1) (a partial differential equation on a randomly perforated domain) in the
forward problem. Here, we considered the behavior of solutions of (2.2) as approximations
of solutions of (2.1) in associated inverse problems. Because it is often difficult to verify a
priori the nature of random error (whether or not the error satisfies the OLS assumptions
in (3.3) or the the GLS assumptions in (4.2)), we compared the efficacy of using solutions
of (2.2) as a model solution for simulated data generated using solutions of (2.2) to the
efficacy of using (2.2) as a model solution for simulated data generated using solutions
of (2.1). The results were especially encouraging for the important parameter α (thermal
diffusivity) which will be critical in our development of NDE methodology. The accuracy and
uncertainty associated with the estimate of the parameter α was similar for data generated
using (2.2) and (2.1) for data with relative and absolute added noise, for both sets of spatial
nodes xi = 0, 0.57 and xi = 0, 0.57, 1.14, and for parameter sets θ = (γ, α, λ), θγ = (αγ, λγ)
and θλ = (γλ, αλ). Though estimating γ presents difficulties in the inverse problem (adds
uncertainty and inaccuracy to the estimate of λ), this affect was similar for data generated
using solutions of (2.2) and data generated using solutions of (2.1). There was only one
example in which there was a significant difference between using data generated using (2.2)
and data generated using (2.1). For data with added absolute random error simulated at
spatial nodes xi = 0, 0.57, 1.14, the uncertainty associated with the parameter estimate γ̂λ
was significantly larger for data generated using (2.1) than for data generated using (2.2).
We believe the inverse problem findings in this report offer significant support that such
methodologies as considered here will be most useful in development of NDE techniques for
porous media structures.
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A Sensitivity

We use the finite element method to numerically solve (2.1) and (2.2). Here, we will discuss
the numerical solution of (2.2) and the sensitivity functions in (3.7); see [1] for discussion of
the numerical solution of (2.1). The finite element method approximates the infinite dimen-
sional solution of a partial differential equation with a finite dimensional approximation. The
domain (Ω̂) is discretized using the Delaunay triangulation. The finite dimensional solution
is taken from the space of piecewise two dimensional affine functions, where the solution is
affine on each mesh element (see [2], [14] and [17] for details). Specifically, in [2], we discussed
the numerical approximation of U , the solution of (2.2), given by uN(t, �x) =

∑N
j=1 Tj(t)φj(�x)

where φj(�x) are piecewise affine basis element and Tj(t) are their time dependent coefficients.

The coefficients Tj(t) are found by solving the ordinary differential equation for �T (t) with
entries Tj(t)

pVM
d
dt

�T (t) + (αK + λD + pV γM) �T (t) = SfI[t0,ts](t)
�f, (A.1)

where M is an N ×N positive definite matrix with elements mij = 〈φi, φj〉, K is an N ×N
positive definite matrix with elements kij = 〈∇φi, A

0∇φj〉, D is an N × N matrix with

components dij =
∫
∂̂Ω

φiφj ds, �f is an N -vector with components fi =
∫
ω4
φi(x, 0)dx and

�T is an N column vector. To approximate Uij(θ
#) in (3.1), we explicitly integrate the

approximation uN(tj , �x) which is piecewise affine on the source boundary ω4 so we use

Uij(θ
#) ≈ 1

l

∫ xi+�

xi

uN(tj , s, 0; θ
#) ds.

Recall that in order to calculate the covariance matrices, we calculate the sensitivity
matrix

χi+m(j−1),k(θ) =
∂

∂ζk
Uij(ζ)

∣∣∣∣
ζ=θ

.

Throughout both the generalized least squares and ordinary least squares parameter esti-
mation procedures, it is tacitly assumed that we use numerical estimations with reasonable
convergence and that the admissible set of parameter is compact and finite dimensional (see
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[4] and [6]). Given these assumptions, in both (3.9) and (4.7), we may estimate χ with the
derivative of the numerical solution itself. Explicitly, we use

χi+m(j−1),k(θ) ≈ χN
i+m(j−1),k(θ) =

∂

∂ζk

(
1

l

∫ xi+�

xi

uN(tj , s, 0; ζ) ds

)∣∣∣∣
ζ=θ

. (A.2)

Noting that the spatial nodes xi and the interval width 
 are parameter independent, we
may move the derivative under the integral and replace uN with its definition

∂

∂ζk

(
1

l

∫ xi+�

xi

uN(tj, s, 0; ζ) ds

)∣∣∣∣
ζ=θ

=
1

l

∫ xi+�

xi

∂

∂ζk

N∑
j=1

Tj(t; ζ)φj(s, 0)

∣∣∣∣∣
ζ=θ

ds

Now, recalling that the basis elements φj are independent of θ and only Tj(t; θ) are dependent
on θ = (γ, α, λ) in (A.1), we have

1

l

∫ xi+�

xi

∂

∂ζk

N∑
j=1

Tj(t; ζ)φj(s, 0)

∣∣∣∣∣
ζ=θ

ds =
1

l

∫ xi+�

xi

N∑
j=1

φj(s, 0)

(
∂

∂ζk
Tj(t; ζ)

)∣∣∣∣
ζ=θ

ds.

We need to solve for
∂

∂γ
Tj(t; ζ),

∂

∂α
Tj(t; ζ), and

∂

∂λ
Tj(t; ζ). First, in order to calculate

∂

∂γ
Tj(t; θ), we differentiate (A.1) with respect to γ. Let �Tγ(t) denote

∂

∂γ
�T (t), and recall

that M , K, D, �f are independent of γ. By the chain rule, ∂
∂γ
(pV γM �T (t)) = pV γM �Tγ(t) +

pVM �T (t), so differentiating (A.1) we obtain

pVM
d

dt
�Tγ(t) + (αK + λD + pV γM)�Tγ(t) + pVM �T (t) = �0N×1. (A.3)

In (A.3) above, M , K and D are as defined in (A.1), and �0N×1 is the N × 1 vector of zeros.

The ordinary differential equation (A.3) has a term that involves �T (t), so (A.3) and (A.1)
must be solved simultaneously. Similarly, we take the derivative of (A.1) with respect to α
to obtain

pVM
d

dt
�Tα(t) + (αK + λD + pV γM)�Tα(t) +K�T (t) = �0N×1, (A.4)

which must also be solved with (A.1). Finally, we take the derivative of (A.1) with respect

to λ to find the system of ordinary differential equations for �Tλ given by

pVM
d

dt
�Tλ(t) + (αK + λD + pV γM)�Tλ(t) +D�T (t) = �0N×1, (A.5)

which also must be solved simultaneously with (A.1).
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